OLED Encapsulation Mark Taylor Emerging Innovations Group January 28, 2014 DoE Solid State Lighting R&D Workshop Tampa, Florida taylormp@corning.com #### Introduction - Objectives of today's remarks - Encapsulation choices - Edge sealing choices - Application of frit sealing to OLED lighting - Encapsulation research needs ### **Encapsulation targets** - Performance - Permeability* $< 1x10^{-6} g_{water}/m^2/day$ - < 1x10⁻⁵ g_{oxygen}/m²/day - Cost - \$10-20/m^{2*} - Reliability >40,000 hours active / 20 years lifetime - Damp heat degradation - Mechanical stress - Thermal stress ^{*}DoE Manufacturing Roadmap - 2013 ### Encapsulation material choices | Material | Pro's | Con's | |-------------------------|--|---| | Metal can | Low costEasy to pocket for desiccant | Poor CTE matchStamping costsEdge seal required | | "Thick" Glass (>0.2 mm) | Excellent moisture, oxygen and thermal resistance Low cost Transparent Expansion match to substrate | Rigid Pocket required for desiccant if frit seal is not used Edge seal required | | Polymer film | Flexible | High costDamage sensitivityEdge seal required | | Deposited coatings | No edge seal | High cost Additional (complex) deposition step Damage sensitivity May require backup glass | | "Thin" glass (<0.2 mm) | Flexible/conformableAll other glass advantages | Fragile and may require polymer
backup Flexible edge seal required with
flexible substrate | ### Edge sealing technology options | Technology | Pro's | Con's | |-----------------------|--|--| | Laser glass frit seal | Established OLED sealing technology Hermetic seal Capable of sealing over electrical leads Narrow seal band | Multiple process steps Expensive Stress buildup with larger sizes Anticlastic bending stress | | Polymer seal | Low temperatureInexpensive process stepsSupports flexibility | May degrade under aggressive environmental conditions Not hermetic Wide seal band Requires desiccant Best performing materials are expensive | ## Corning developed a hermetic sealing solution using a low Tg glass frit Deposit required width and thickness frit line on cover glass Frit uniquely designed to absorb required energy Align cover glass with backplane / OLED stack and seal with localized heat source - ✓ Developed a low Tg frit with unique absorption characteristics tuned to a specifics wavelength region (IR) - ✓ Designed frit with a selective filler material to adjust the CTE - ✓ These unique features offered sealing compatible with OLEDs. ### OLED laser frit sealing process flow ### Seal performance was demonstrated with different lead configurations and with live OLEDs - Sealing tests performed successfully over various lead materials/passivation layers - Mo, W, Ti, Cr, ITO, multi-layer metals - SiN_x, SiO₂ passivation materials - Sealing performance sealed over lead material, - Ca test at 85C/85% RH passes 8,500 hrs with glass package - Successfully demonstrated over active and passive backplanes - Successfully sealed many hundreds of live OLED samples without damage to leads or to the OLEDs - Sealing confirmed hermetic - No electrical issues with display performance - AM OLED displays exceeded 2000 hours under 85C/85% RH testing ### Technology wishlist - Stress modeling of hermetically sealed glass laminate - Reduced cost of sealing polymers - Greater flexibility of polymers after curing - Lower permeability to reduce desiccant load - Solid state polymer encapsulant with inorganic layers and glass or polymer barrier # CORNING